Numerical Simulation of the Time-Dependent
Schrodinger Equation: Crank—Nicolson Method

Alexis F. Espinoza Q.
University of Talca

20 de julio de 2025

Professor: Américo Cuchillo Flores

Alexis F. Espinoza Q. (UTALCA) A look at the Physics of materials - UA 20 de julio de 2025 1/35



Contents

@ Introduction

(@ Problem Formulation

(3 Discretization

(@ Matrix Formulation

(8 Algorithm — Step by Step
© Algorithm — Code

(@ Conclusions

Alexis F. Espinoza Q. (UTALCA) A look at the Physics of materials - UA 20 de julio de 2025 2/35



Schrodinger Equation

The time-dependent Schrddinger equation for a free particle (V =0 or
V' = constant) is given by:

2
8t 2m

A Gaussian wave packet is proposed as the initial condition, confined

within a two-dimensional domain (2D quantum box), to numerically solve

the Schrodinger equation using the Crank—Nicolson method.
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Schrodinger Equation in 2D

Developing the Laplacian operator:

LOUy t) W (P o
g0 (355

ox? + Oy?

We work with boundary conditions (infinite potential walls):
P(0,y,t) =¢(L,y, 1) = ¢(x,0,t) = ¢(x, L, t) = 0

Initial condition (Gaussian wave packet with momentum 5 = hk):

x=x)?+ =y .
By 0) = e ar . eflhorcthy)
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Spatial and Temporal Discretization

A rectangular grid of (Nx + 2) x (N, + 2) points is defined, including

boundaries.
Spatial steps:

with
xi=IiAx, yj=jAy, i=1,.. Ny, j=1,..N,

2D Laplacian using centered finite differences:

2 Wi — 2¥ij+vYicry | Vi — 2¢i5 + i
Vi~ Ax? + Ay?
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Temporal Discretization - Crank-Nicolson

Temporal discretization with step At. Use of differentials: dt ~ At,

dx =~ Ax, dy = Ay.
Crank-Nicolson (implicit, unitary):

n+1l _ .,n H
¢ At w — 7& (vZ,l)Z)fH-l + v2wn)

2m

Multiply by At, and rearrange as:

2 il o2y . ihAt
(1 +sV2) " = (1 —=sV2) 9", with S= g
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2D Laplacian via Kronecker Product

We define:

D, = tridiagonal matrix of centered finite differences in x
D, = tridiagonal matrix of centered finite differences in y
I, = identity matrix of size N, x Ny

l, = identity matrix of size N, x N,

Full Laplacian:
L=1,®Ds+ D, ® I

The Crank—Nicolson evolution matrices are given by:
A=Il+sl, B=1—-sL
The linear system to be solved at each time step is:
A"+l — Byn
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Tridiagonal Matrices D, and D,

The matrices Dy and D, represent the discretization of the second-order
spatial derivative in the x and y directions, respectively. They are
symmetric and tridiagonal:

2 -1 0 --- 0
-1 2 -1 0
p=|0 -1 2 0
: : : S |
| 0 0 0 -1 2]

This structure applies to both D, and D,, adjusted to the sizes Ny x Ny

and N, x N,, respectively.

In Python, this is built using: ‘scipy.sparse.diags([-1, 2, -1], [-1, O, 1])’
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2D Laplacian via Kronecker Product

The full 2D Laplacian is constructed as:

L=1,®Dx+ D, ® I
This generates a large sparse matrix representing the coupling between all
interior grid points in the 2D domain.
o Iy, I,: identity matrices of sizes N, and N,
o ®: Kronecker product (tensor product)

o L: matrix of size (NxNy) x (NiN, ), acting on the flattened
wavefunction vector

In Python, this is implemented as: ‘Laplacian = kron(ly, Dx) + kron(Dy,
Ix)*

Alexis F. Espinoza Q. (UTALCA) A look at the Physics of materials - UA 20 de julio de 2025 9/35



Evolution Matrices A and B

In the Crank—Nicolson method, time evolution requires solving the system
at each time step:

AY"Tt = By" with A=/+sL, B=1[—sL
Where:
o /: identity matrix of size NyN, x N, N,

o L: full Laplacian matrix (via Kronecker product)
ihAt

0s=—
TN

Both A and B are sparse matrices. The matrix A is LU-factorized once to
speed up the simulation.
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5-Point Stencil — Grid and Coupling

(@]

O

@)

Laplacian Operator:

Vit HYic1y + i+ Y1 — 4y

2
Vi Ax2

Each point (/,j) is coupled with its immediate neighbors using the 5-point
stencil scheme to approximate the Laplacian.
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General Algorithm

@ Define the grid: Ax, Ay, At, N
@ Set initial conditions and box dimensions: xg, yo, kox, koy, L.

o Gaussian wave packet centered at (xo, o)
o Packet with width o and initial phase e/(ko-x+koyy)

@ Construct matrix D, then formulate the 2D Laplacian L using
Kronecker products:

L=1,®Dy+ D, @I,
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General Algorithm

@ Compute implicit evolution matrices:

ThAt

A=[|+sl, B=1-sL with s=1 3

and factorize A via LU decomposition for efficient solving; this is done
only once in the code, since L, A, B remain constant.

® Flatten the wavefunction (x, y) into a column vector (initially
declared as a matrix on the grid).
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General Algorithm

® For each time step:

Compute right-hand side: b = By"
Solve the linear system: Ay"™tl = b

Flatten ¢ again into column vector for the next time step
Every 10 time steps:

o Compute |1b(x, y, t)|* (probability density)
o Store the frame for animation

@ Visualize through animation:

o A video is generated showing the evolution of |¢(x, y, t)|?
o Uses an inferno color scale with colorbar

© 06 606 0 o
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Simulation by Alexis F. Espinoza Q.
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Figure: Evolution of the 2D quantum wave packet.
Propagation with initial momentum py = hkg. Unitary simulation
Crank—Nicolson.
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Simulations with Diverse Initial Parameters

Case X0 Yo ko 0 oz
1 0.3L 0.3L 12.0 0° 0.05
2 0.2L 0.2L 15.0 | 45° 0.15
3 0.5L 0.5L 0.0 — 0.08
4 0.5L 0.5L 0.0 — 0.4
5 0.25L | 0.25L | 5.0 90° 0.13
6 0.5L 0.5L 3.0 135° 0.2
7 0.9L 0.1L 8.0 180° 0.4
8 0.05L | 0.95L | 25.0 | 270° | 0.07
9 0.2L 0.8L 10.0 30° 0.1
10 0.45L | 0.55L 7.5 120° | 0.06

— Videos ...
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Physical Analysis of Cases 1-5

@ Case 1: Horizontal propagation with kg = 12, very narrow wave packet o = 0.05, strong
collision with the right wall, clear reflection.

@ Case 2: Diagonal motion from the lower-left corner. With 6 = 45° and ky = 15, produces
multiple reflections and complex interference patterns.

@ Case 3: No initial momentum, localized wave with o = 0.15. Centered, symmetric packet.
Clearly defined and periodic oscillatory modes; ideal case to analyze norm conservation.

@ Case 4: Similar to Case 3 (kg = 0), but with o = 0.4: significantly wider packet.
Approximates an extended state across the region.

@ Case 5: Pure vertical motion, kg = 5, reflection at the upper wall. Packet with o = 0.13.
Clean pattern.
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Physical Analysis of Cases 6-10

@ Case 6: Diagonal trajectory toward the upper-left corner with kg = 3. Wide packet
o = 0.2, smooth motion, more diffuse patterns.

@ Case 7: From the right edge toward the left with kg = 8, fast collision. Visible reflection
and crossed interference patterns.

O Case 8: Top-to-bottom trajectory with ko = 25, highly collimated (¢ = 0.07). Violent
rebound and long straight-line path.

@ Case 9: Smooth trajectory § = 30°, medium-energy collision. Internal interference is
visible at each bounce.

@ Case 10: From the center with 6 = 120°. Packet width o = 0.06. Wave modes form that
periodically expand and refocus the wave packet at the center of the region.
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Problem Parameters and Grid

# Square domain of size L
L =0.6

# Spatial resolution: Nx x Ny interior points
Nx = Ny = 320
dx = L / (Nx + 1) # uniform spatial step

# Spatial coordinates

Xx = np.linspace(0, L, Nx + 2)

y = np.linspace(0, L, Ny + 2)

X, Y = np.meshgrid(x, y) # 2D spatial mesh/grid

[m] = = =
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Temporal Discretization

# Total simulation time
T = 0.8

# Small time step for stability
dt = le-4
Nt = int(T / dt)

# Dimensionless factor: s = i hbar t / (2m x *%*2)
hbar = 1.0

m = 1.0

s = 1j * hbar * dt / (4 * m *x dx**2)

) Qv

(=] [ = = p -
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Initial Condition: Gaussian Wave Packet - 1

# Parameters of the Gaussian packet
x0, y0O = 0.3, 0.3 # initial position

sigma = 0.1 # packet width
k0O = 10.0 # initial momentum
theta = 0 # direction (in radians)

# Components of the wave vector
kOx = kO * np.cos(theta)
kOy = kO * np.sin(theta)

=] F = E DQAC
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Initial Condition: Gaussian Wave Packet - 2

# Initial phase according to momentum

fase = np.exp(1j * (kOx * X + kOy * Y))

# Definition of the initial wave function

psiO = np.exp(-((X - x0)*x*x2 + (Y - y0)**2) / (2 =
sigmax*2)) * fase

# Boundary conditions: zero values at the edges

psio [0, :] = psiO[-1, :]1 = 0.0

psiO[:, 0] = psiO[:, -11 = 0.0

# Extract the interior part and flatten into a column
vector

psi = psiO[1:-1, 1:-1].flatten()

[m] = = =
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Construction of the 2D Laplacian

# Construction of tridiagonal matrices

Ix =

Iy =
Dx =

Dy

# 2D

identity (Nx)
identity (Ny)
diags([-1, 2, -1],

[-1, 0, 1], shape=(Nx, Nx))
diags([-1, 2, -1], [-1

» 0, 11, shape=(Ny, Ny))

Laplacian = Iy Dx + Dy Ix

Laplacian = kron(Iy, Dx) + kron(Dy, Ix)
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Crank-Nicolson Matrices and LU Factorization

# Evolution matrices: A psi n+l = B psi n
A = identity(Nx * Ny) + s * Laplacian
B = identity(Nx * Ny) - s * Laplacian

# LU factorization of A (constant over time)
LU = splu(A.tocsc())
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Temporal Evolution of the System

# List to store the evolution
data = []

# Time iteration

for n in range (Nt):
b = B.dot(psi) # right hand side: B psi n
psi = LU.solve(b) # solution:

psi n+l = Ax*xx-1
b

if n % 10 == O: # save every 10 steps
psi_grid = np.zeros((Ny + 2, Nx + 2),
complex)

psi_grid[1:-1, 1:-1] = psi.reshape((Ny, Nx))
data.append (np.abs (psi_grid) **2)

dtype=
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Visualization and Animation - 1

# Graphic configuration
fig, ax = plt.subplots ()

im = ax.imshow(data[0], extent=[0, L, O, L], origin=’
lower’,
cmap=’inferno’, vmin=0, vmax=np.max(
data[0]))
# Axes and title
ax.set_xlabel (’x’)
ax.set_ylabel(’y’)
ax.set_title(’| (x, y, t)l evolution’)
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Visualization and Animation - 2

# Colorbar
cbar = fig.colorbar(im, ax=ax)
cbar.set_label (’Probability density | | )

# Update function for the animation

def update(frame) :
im.set_data(data[frame])
ax.set_title(f’t = {frame * dt * 10:.5f} s’)
return [im]

# Create and save animation

ani = animation.FuncAnimation(fig, update, frames=len/(
data), blit=True)

ani.save("schrodinger2DBox .mp4", writer=’ffmpeg’, fps
=30, dpi=300)
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Simulation and Animation

Animation produced with matplotlib.animation.FuncAnimation, saved as:
schrodinger2DBox .mp4

Includes:
o Colormap of type inferno
o Scale for probability density

o Dynamic time label (time counter)
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Normal Modes and Eigenfunctions in the Quantum Box

o A Gaussian wave packet inside a quantum box is a superposition of

multiple eigenstates of the system. If the packet has no initial
momentum (ko = 0), primarily low-energy modes centered
symmetrically are excited.

o Each of these modes is an eigenfunction of the Hamiltonian with

infinite well boundary conditions:

Gn.m(x,y) =sin (nﬂ> sin

r)en (7

1 ), n,méeN

o These functions satisfy:

h272

/:/¢n,m = En7m¢n,m, Wlth En,m = 2mL2

(n* +m?)
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Normal Modes and Eigenfunctions in the Quantum Box

o During temporal evolution, each mode oscillates independently as:

wn,m(Xv% t) = ¢n,m(X7Y)e_IEn’mt/h

o The interference among multiple modes generates quasiperiodic
oscillatory patterns in the probability density. In the simulations,
these patterns appear as "beats” or modulations, especially in cases
c2 and c3.
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What happens if ky # 07

o If the initial Gaussian wave packet has nonzero momentum, it is still a
superposition of the system's eigenfunctions:

X% chm¢nmXY)

o Each coefficient ¢, , depends on the characteristics of the packet

(center, width, and wave vector /?0), but the eigenfunctions ¢, m
remain the same.

o During the evolution, the wave function is:

X)/a chm¢nmXY) ~iEnmt/R
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What happens if ky # 07

o Although the packet moves, bounces, and changes shape due to
interference, after an initial transient a quasiperiodic dynamics with
regular interferences or "beats’ may also emerge; this is observed in
cases c8, 9, and c10.

o The probability density does not " collapse” into individual
eigenstates, but it can stabilize into a recurrent structure.

Conclusion:

Even with kg # 0, quasiperiodic beating patterns can be observed,
although with different shapes and frequencies compared to the case with
ko = 0.
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Energy Conservation in the Quantum System

o The quantum evolution is governed by the Schrodinger equation:
., 0 A
Ihaﬂ}(X,y, t) = Hw(Xa}/a t)

If the Hamiltonian H is time-independent (as in this system):
d
dt

The Hamiltonian operator in the simulation is:

A h2 [ 92 02
H=— | =— + —
2m \ Ox2 = Oy?
o The numerical evolution uses Crank—Nicolson, which is:
o Unitary: conserving the norm [ |¢|? dx dy

Therefore, in all simulation cases (with ko = 0 or kg # 0), the
expected energy is conserved:

(1h(t)| A (t)) = constant
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Conclusions

o The Crank-Nicolson method is numerically stable and unitary, fulfilling
the necessary conditions to maintain the norm of the wave function ¢
at each iteration. Its temporal and spatial discretization allows
simulating time evolution, with the possibility of extension to external
potentials, barriers, or more complex potential well geometries.

o In the case of zero initial momentum, cases c2 and c3, the wave
packet does not propagate in any preferred direction. However, it does
not remain static: spatial pattern oscillations are observed, resulting
from interference among multiple stationary modes of the system.
These oscillations correspond to quantum normal modes. The total
energy is conserved, but its spatial distribution varies periodically in
time.
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Any questions?

«O> <Fr o« -
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